埋入式電源軌展開佈線試驗

2022-06-22
作者 imec

比利時微電子研究中心(imec)於2022年IEEE國際超大型積體電路技術研討會(VLSI Symposium),首度展示從晶背供電的邏輯IC佈線方案…

新方案利用奈米矽穿孔(nTSV)結構,將晶圓正面的元件連接到埋入式電源軌(buried power rail)上。微縮化的鰭式場效電晶體(FinFET)透過這些埋入式電源軌(BPR)實現互連,性能不受晶背製程影響。

這套先進的佈線方案能分離電源線與訊號線的配置,推動2nm以下邏輯晶片持續微縮,還能增強供電效能,進而提升系統性能。此外,imec也在晶圓背面導入了採用2.5D金屬——絕緣體——金屬(MIM)結構的電容,展現更佳的晶片效能。

晶背供電設計能分離邏輯IC的電源供應網路與訊號線,進而減緩後段製程佈線壅塞的問題,還能帶來最佳化供電效能的好處。2019年imec首次提出這項技術,不同的製程方案也隨之出現。例如,在2021年VLSI技術研討會,imec首度展示晶背導線互連的實例,將奈米矽穿孔連接到位於晶圓正面的M1金屬層襯墊。

今年VLSI技術研討會,imec在其發表的論文中展示一套進階整合方案,透過埋入式電源軌,將FinFET微縮元件一齊連接到晶圓正面與背面,創下全球首例。imec的CMOS元件技術研究計畫主持人Naoto Horiguchi表示:「我們相信,從微縮元件與提升性能的角度來看,採用晶背供電設計並導入埋入式電源軌是最有可能實現晶背供電網路的解決方案,這些電源軌在前段製程中埋入晶片,以局部佈線的結構設計推動晶片微縮。」

他接著說明:「我們在開發測試晶片時,從晶圓正面定義埋入式電源軌的圖形,隨後將奈米矽穿孔連接到這些電源軌上,結果顯示FinFET元件性能不受晶背製程影響,這就包含接合目標晶圓與承載晶圓、薄化晶背以及製造深度長達320nm的奈米矽穿孔。奈米矽穿孔以垂直向與埋入式電源軌緊密接合,各穿孔的間距僅200nm,不佔用標準單元尺寸,能確保元件繼續微縮至2nm以下。」

晶背供電設計可望從系統層面提升整體供電效能,尤其目前元件所需的功率密度持續攀升,供應電壓或IR壓降的問題也越來越嚴峻。imec的3D系統整合計畫VP Eric Beyne表示:「我們在2022 VLSI技術研討會上發表的一篇論文,在晶背製程中導入一顆2.5D柱狀MIM結構的去耦電容。透過這顆2.5D電容,電容密度因此提升了4~5倍,IR壓降現象與無電容(32.1%)及2D電容(23.5%)相比都來得低。這些分析結果來自一套經過實驗數據校正的IR壓降模擬架構。」

Beyne總結:「我們的研究成果顯示晶圓背面具備高彈性的設計空間,還能訴諸全新的設計選擇,解決傳統2D晶片微縮的痛點。此外,我們也展示了一些3D系統級微縮技術的效能,在剝離承載晶圓時,以功能性晶圓取而代之,例如用於3D SoC邏輯元件堆疊的邏輯晶圓,而底層的晶粒可從晶背取得電源供應。」

 

 

FinFET微縮元件透過奈米矽穿孔與埋入式電源軌連接至晶圓背面,與晶圓正面連接則利用埋入式電源軌、通孔對電源軌(via to BPR,VBPR),以及電源超出主動區(metal over active,MOA)的結構設計。

 

 

 

 

活動簡介
TAIPEI AMPA & Autotronics Taipei X Tech Taipei 2023「智慧領航車聯網技術論壇」邀請來自產業的代表業者與專家齊聚一堂,透過專題演講、現場應用展示以及互動論壇,深人交流智慧交通與車聯網的融合應用,基礎設施以及安全測試與標準化等主題,帶來一系列迎接車聯網時代必須掌握的最新技術與市場趨勢,協助工程師進一步探索充滿無限可能的智慧移動大未來。
贊助廠商

發表評論

訂閱EETT電子報